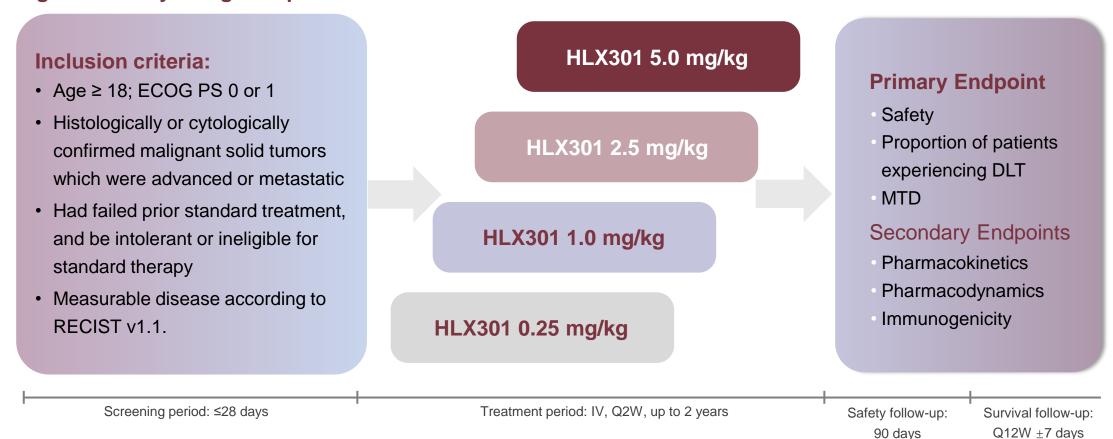
Poster #294: Safety, pharmacokinetics, pharmacodynamics and preliminary efficacy of HLX301, a bispecific antibody targeting PD-L1 and TIGIT, in patients with advanced solid tumors

Michelle Frances Morris¹, Ines Esteves Domingues Pires da Silva², Gary Edward Richardson³, Steven Chuan-Hao Kao⁴, Yunna Zang⁵, Haoyu Yu⁵, Qingyu Wang⁵, Jing Li⁵

¹Sunshine Coast University Hospital, Birtinya, Australia; ²Blacktown Hospital, Blacktown, Australia; ³Cabrini Hospital, Brighton, Australia; ⁴Chris O'Brien Lifehouse, Camperdown, Australia; ⁵Shanghai Henlius Biotech, Inc., Shanghai, China


Background

- Bispecific antibodies (bsAbs) provide a novel approach to antitumor therapy by allowing the simultaneous targeting of different antigens via a range of mechanisms of action^{1,2}. Currently, multiple bsAbs have been approved for the treatment of hematological malignancies and selected solid cancers with notable clinical efficacy³.
- Immune checkpoint proteins, the programmed death ligand 1 and T cell immunoreceptor with immunoglobulin and ITIM domain, are important components of cancer-related T cell immunosuppression^{4,5}.
- · HLX301 is a recombinant humanized anti-PD-L1 and anti-TIGIT bispecific antibody. Preclinical studies demonstrated its anti-tumor activity.
- Here we report findings from the dose escalation part (phase 1a) of a phase 1/2 study evaluating HLX301 in patients with locally advanced or metastatic solid tumors.

Methods

- This is a multicenter, first-in-human, open-label, phase 1/2 study to evaluate the safety and preliminary anti-tumor efficacy of HLX301 as a single-agent in patients with locally advanced or metastatic solid malignancies, who had failed or were intolerant to standard therapy, or for whom no standard therapy was available (NCT05102214).
- The study comprised three parts: a phase 1a dose escalation stage (presented in Figure 1), a phase 1b dose expansion stage and a phase 2 clinical expansion stage.
- · Tumor imaging by computed tomography or magnetic resonance imaging was scheduled at baseline, every 6 weeks for 24 weeks from the first dose, every 8 weeks thereafter. Tumor response status was assessed using the RECIST v1.1 and immune-based RECIST criteria (response evaluation of hepatocellular carcinoma was per the modified RECIST criteria).

Figure 1. Study design for phase 1a

DLT, dose-limiting toxicity; ECOG PS, Eastern Cooperative Oncology Group performance status; IV, intravenous; MTD, maximum tolerable dose; Q2W: every 2 weeks; Q12W: every 12 weeks; RECIST, Response Evaluation Criteria in Solid Tumors.

Results

- As of the data cut-off date of Oct 27, 2023, 9 patients were enrolled in the HLX301 0.25 mg/kg (n = 3), HLX301 1.0 mg/kg (n = 3), HLX301 2.5 mg/kg (n = 1), HLX301 5.0 mg/kg (n = 2) cohorts.
- The median duration of HLX301 treatment was 10.3 (range, 0.1–45.1) weeks.
- Baseline demographics and characteristics of the various cohorts are shown in Table 1.

References

- Herrera M, et al. Trends in Cancer 2024;10(10):893-919.
- 2. Sun Y, et al. Acta Pharm Sin B 2023;13(9):3583-3597.
- 3. Klein C, et al. Nat Rev Drug Discov 2024; 23(4):301-319.

Presenter: Dr da Silva; E-mail: inespiresilva@gmail.com

- 4. Han Y, et al. Am J Cancer Res 2020;10(3):727-742.
- 5. Chauvin JM, et al. J Immunother Cancer 2020; 8(2):e000957.

HLX301 showed an acceptable safety profile with preliminary anti-tumor activity. These findings could support further clinical investigation.

Table 3. Summary of TEAEs

n (%)	0.25 mg/kg (n = 3)	1.0 mg/kg (n = 3)	2.5 mg/kg (n = 1)	5.0 mg/kg (n = 2)
Any TEAEs	3 (100)	3 (100)	1 (100)	2 (100)
Grade ≥ 3 TEAEs	1 (33.3)	1 (33.3)	1 (100)	1 (50.0)
Serious TEAEs	0	1 (33.3)	1 (100)	1 (50.0)
TEAEs leading to Tx discontinuation	0	0	0	1 (50.0)
TEAEs leading to death	1 (33.3)	1 (33.3)	1 (100)	0
Any TRAEs	1 (33.3)	2 (66.7)	1 (100)	2 (100)
Grade ≥ 3 TEAEs	0	0	0	1 (50.0)
Serious TRAEs	0	0	0	1 (50.0)
TRAEs leading to Tx discontinuation	0	0	0	1 (50.0)
TRAEs leading to death	0	0	0	0
IRRs	0	1 (33.3)	1 (100)	0
irAEs	1 (33.3)	1 (33.3)	0	2 (100)

irAE, immune-related adverse event; IRR, infusion-related reactions; TEAE, treatment-emergent adverse event; TRAE, treatment-related adverse event; Tx, treatment.

Table 4. Most common TEAEs

n (%)	0.25 mg/kg (n = 3)	1.0 mg/kg (n = 3)	2.5 mg/kg (n = 1)	5.0 mg/kg (n = 2)
Any TEAEs (≥ 2 patients ^a)				
Cough	0	3 (100)	1 (100)	0
Disease progression	1 (33.3)	1 (33.3)	1 (100)	0
Non-cardiac chest pain	1 (33.3)	2 (66.7)	0	0
Chills	1 (33.3)	1 (33.3)	0	0
Fatigue	1 (33.3)	1 (33.3)	0	0
Abdominal pain	2 (66.7)	0	0	0
Constipation	1 (33.3)	1 (33.3)	0	0
Nausea	0	0	1 (100)	1 (50.0)
Vomiting	2 (66.7)	0	0	0
Arthralgia	1 (33.3)	0	0	1 (50.0)
IRR	0	1 (33.3)	1 (100)	0

^a Out of the total 9 patients.

IRR, infusion-related reactions; TEAE, treatment-emergent adverse event.

- All patients experienced at least one TEAE (Table 3). TEAEs leading to death occurred in 3 (33.3%) patients; all of which were due to disease progression and not related to HLX301.
- 1 patient (11.1%) in the 5.0 mg/kg cohort reported dose-limiting toxicity with a grade 3 cytokine release syndrome that was treatment-related; this was the only patient with the TRAE that led to treatment discontinuation (Table 3). The maximum tolerable dose in this phase 1a was not determined.
- 4 (44.4%) patients reported treatment-related irAEs while treatment-related IRRs occurred in 2 (22.2%) patients (Table 3).
- The most common TEAEs (occurred in ≥ 2 patients) are listed in Table 4.

Table 1. Patient demographics and baseline characteristics

	0.25 mg/kg (n = 3)	1.0 mg/kg (n = 3)	2.5 mg/kg (n = 1)	5.0 mg/kg (n = 2)		0.25 mg/kg (n = 3)	1.0 mg/kg (n = 3)	2.5 mg/kg (n = 1)	5.0 mg/kg (n = 2)
Median age (range), years	75 (42–77)	64 (46–72)	72 (72–72)	60.5 (47–74)	Metastatic disease				
Sex	(42 77)	(40 12)	(12 12)	(47 74)	Yes	3 (100)	2 (66.7)	1 (100)	2 (100)
Male	1 (33.3)	1 (33.3)	1 (100)	1 (50.0)	No	0	1 (33.3)	0	0
Female	2 (66.7)	2 (66.7)	0	1 (50.0)	Prior surgery/procedure	1 (33.3)	2 (66.7)	1 (100)	2 (100)
Race	2 (00.1)	2 (00.1)		1 (30.0)	Prior systemic therapy	3 (100)	3 (100)	1 (100)	2 (100)
White	2 (100)	2 (100)	1 (100)	2 (100)	Anti PD-(L)1	1 (33.3)	1 (33.3)	1 (100)	0
	3 (100)	3 (100)	1 (100)	2 (100)	Prior lines of therapy				
ECOG PS	_				Adjuvant/Neoadjuvant	0	1 (33.3)	1 (100)	0
0	0	3 (100)	0	1 (50.0)	1st-line	3 (100)	2 (66.7)	0	2 (100)
1	3 (100)	0	1 (100)	1 (50.0)	2nd-line	3 (100)	1 (33.3)	0	1 (50.0)
Tumor staging					3rd-line	3 (100)	1 (33.3)	1 (100)	2 (100)
Stage IIIB	0	1 (33.3)	0	0	4th-line	1 (33.3)	1 (33.3)	1 (100)	2 (100)
Stage IV	1 (33.3)	1 (33.3)	1 (100)	2 (100)	5th-line	1 (33.3)	0	0	1 (50.0)
Stage IVB	2 (66.7)	1 (33.3)	0	0	6th-line	1 (33.3)	0	0	0

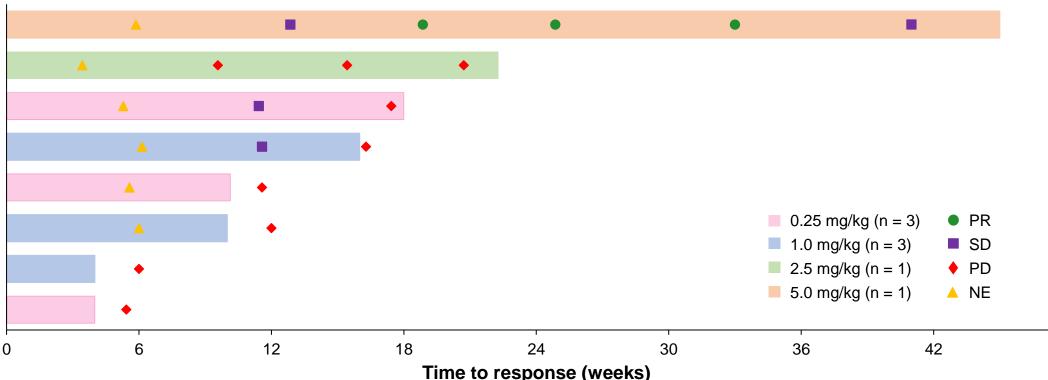
ECOG PS, Eastern Cooperative Oncology Group performance status; PD-(L)1, programmed death-(ligand) 1

Preliminary efficacy

Table 2. Tumor response in the response-evaluable patients^a

able 2. Tallier responde in the responde evaluable patients						
n (%)	0.25 mg/kg (n = 3)	1.0 mg/kg (n = 3)	2.5 mg/kg (n = 1)	5.0 mg/kg (n = 1)		
ORR, %	0	0	0	1 (100)		
DCR, %	1 (33.3)	1 (33.3)	0	1 (100)		
CR	0	0	0	0		
PR	0	0	0	1 (100)		
SD	1 (33.3)	1 (33.3)	0	0		
PD	2 (66.7)	2 (66.7)	1 (100)	0		
NE	0	0	0	0		

the 8 efficacy-evaluable patients, there were no complete


 One patient in the HLX301 5.0 mg/kg cohort achieved partial response with a DOR of 5.1 months.

 One patient each in the 0.25 mg/kg and 1.0 mg/kg cohort achieved stable

^a Confirmed tumor response assessed per RECIST v1.1 for the 8 response-evaluable patients.

CI, confidence interval; CR, complete response; DCR, disease control rate; DOR, duration of response; NE, not evaluable; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease.

Figure 2. Swimmer plot of patients' confirmed tumor response as assessed by the IRRC per RECIST v1.1

NE, not evaluable; PD, progressive disease; PR, partial response; SD, stable disease

Acknowledgments and Disclosures

- The authors would like to acknowledge the participants in this study and their families, the investigators, Cong Chen and the staff at all clinical sites.
- This study was funded by Shanghai Henlius Biotech, Inc. Editorial support was provided by Zhi Hao Kwok, Xiao Zou, and Chen Hu from Shanghai Henlius
- The presenter declared no competing interests. Yunna Zang, Haoyu Yu, Qingyu Wang, Jing Li and are employees of Shanghai Henlius Biotech, Inc. 2025 American Society of Clinical Oncology (ASCO) Annual Meeting, May 30 – June 3, 2025